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Figure 4a Illustration of the surface area and surface energy changes associated with the
morphological evolution of a stretched hexagon. When the surface energy changes
caused by the displacement of facet 1 are added and then divided by the volume swept,
the wmc of facet 1 is determined.
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Figure 4b Illustration of the surface area and surface energy changes associated with the

morphological evolution of a stretched hexagon. The wmc of facet 2 is determined to
be g1/l1.
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Figure 5 Comparison of the potential gradients at the edge of a stretched square when a
parabolic potential (pp) is assumed, and when the mean chemical potential difference
between adjacent facets is linearized (lp).
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Figure 6 Comparison of the predicted time dependencies of the aspect ratio at 1600°C for
stretched squares and stretched hexagons of fixed size.
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Figure 7 Plot of the predicted effect of temperature on the shape equilibration kinetics of a
stretched hexagon.
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Figure 8 Predicted effect of surface energy anisotropy on the shape equilibration kinetics of a
stretched square. In (a) g 1  is held fixed at 1 J/m2, and changes in Req are
accommodated by changes in the value of g 2 .
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Figure 8 Predicted effect of surface energy anisotropy on the shape equilibration kinetics of a
stretched square. In (b), the values of both g 1 and g 2  are adjusted to accommodate the
change in Req, but the average surface energy of the equilibrium shape crystal is
maintained constant at 1 J/m2.
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